LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – APRIL 2013

PH 1503/PH 1502/PH 1501 - PROPERTIES OF MATTER & ACOUSTICS

 Date: 09/05/2013
 Dept. No.
 Max. : 100 Marks

 Time: 1:00 - 4:00
 Max. : 100 Marks
 Max. : 100 Marks

PART – A

Answer ALL questions:

- 1. Define bulk modulus.
- 2. Calculate the energy stored in a wire of $4m \log and 10^{-3} m$ diameter when stretched by $2x10^{-4}m$ by a load of 10kg.
- 3. Define i) critical velocity and ii) terminal velocity.
- 4. What is the effect of temperature on the viscosity of a liquid?
- 5. Define sphere of influence.
- 6. Mention the unit and dimension of surface tension.
- 7. List any two properties of light waves?
- 8. If the frequency of a tuning fork is 400 Hz and the velocity of sound in air is 330m/s, find how far sound travels when the fork completes 10 vibrations.
- 9. What is piezoelectric effect?
- 10. Define reverberation time.

Answer any FOUR questions:

<u>PART – B</u>

11. a) Derive an expression for the period of oscillation of a cantilever.		
b) Describe the oscillation method to determine the Young's modulus for the		
material of a cantilever. (Neglect the mass of the cantilever).	(3+4.5)	
12. Describe the construction and working of McLeod gauge.	(3+4.5)	
13. a) Describe Jaeger's method for determining the surface tension of a liquid.		
b) If the pressure of air in a soap bubble of $7x10^{-3}$ m dia is $8x10^{-3}$ m of water above		
the atmospheric pressure, calculate the surface tension of the soap solution.	(5+2.5)	
14. Show that the energy of a plane progressive wave is given by $E=2\pi^2\rho n^2a^2$.		
15. Mention any five properties of ultrasonics.		
<u>PART – C</u>		
Answer any FOUR questions:(4X12.5=50 mar	(4X12.5=50 marks)	
16. a) Derive an expression for the twisting couple of a cylinder.		
b) How can the rigidity modulus be calculated using torsional pendulum?	(6+6.5)	
17. a) Derive an expression for the rate of flow of a viscous fluid through a capillary tube.		
b) A spherical glass ball of mass 1.34×10^{-4} kg and radius 2.2×10^{-3} m falls with a		
velocity 0.06m/s inside a large volume of oil of density 943kg/m ³ . Calculate the		
viscosity of the oil.	(8.5+4)	

(10x2=20 marks)

(4X7.5=30 marks)

18. a) Derive an expression for the excess pressure inside a curved surface and discuss	
it for the special cases.	
b) Calculate the surface tension of water, if the height of water in the capillary tube	
of diameter 1mm, is 3cm.	(10+2.5)
19. a) Explain Doppler effect.	
b) Find an expression for the change in frequency when both the source of sound	
and the observer are in motion.	(2.5+10)
20. Give a brief note on any eight applications of ultrasonics.	

\$\$\$\$\$\$\$